Abstract
Protein crystallization is the bottleneck in macromolecular crystallography, and crystal recognition is a very important step in the experiment. To improve the recognition accuracy by image classification algorithms further, the Mask R-CNN model is introduced for the detection of protein crystals in this paper. Because the protein crystal image is greatly affected by backlight and precipitate, the contrast limit adaptive histogram equalization (CLAHE) is applied with Mask R-CNN. Meanwhile, the Transfer Learning method is used to optimize the parameters in Mask R-CNN. Through the comparison experiments between this combined algorithm and the original algorithm, it shows that the improved algorithm can effectively improve the accuracy of segmentation.
Funder
National Key Research and Development Program of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献