Reuse of Sintered Sludge from Municipal Sewage Treatment Plants for the Production of Lightweight Aggregate Building Mortar

Author:

Li ChangyongORCID,Zhang Xiaoyan,Zhang Bingxin,Tan Yunfei,Li FenglanORCID

Abstract

In recent years, the sludge produced by municipal sewage treatment plants has become an important recyclable resource for producing green building materials. After the systematic processing of incineration and particle formation, the sintered sludge can be processed into fine lightweight aggregate to produce building mortar with the controlled leaching of heavy metals and radioactivity. In this paper, to increase its economic and environmental benefits, mortar with sintered sludge aggregate was made by cement admixing of fly ash or limestone powder. The water-to-binder ratio was set at three levels—0.82, 0.68, and 0.62—and either flay ash or limestone powder was used to replace equal masses of cement at 10%, 20%, or 30%. Eighteen groups of mortar were studied to evaluate their workability, air content, compressive strength, tensile adhesive strength, dry density, and thermal conductivity. The results indicate that with a proper water-to-binder ratio, and the replacement ratio of fly ash or limestone powder, the mortar can be produced with good workability, consistency, water-retention rate, layering degree, and setting time. The mortar made with sintered sludge lightweight aggregate, designated by the mix-proportion method for conventional lightweight aggregate mortar, did not meet the target strength, although the compressive strength of mortar was no less than 3.0 MPa, which meets the strength grade M2.5. The tensile adhesive strength reached 0.18 MPa. The mortar was super lightweight with a dry density less than 400 kg/m3, and a thermal conductivity within 0.30~0.32 W/(m⋅K). The effects of water-to-binder ratio and replacement ratio of fly ash or limestone powder on the above properties are discussed with test results. The study provides a basis for using sintered sludge lightweight aggregate for building mortar.

Funder

Henan Provincial Special Project of Key Sci-Tech Research and Development Promotion, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3