The Effect of Nickel Contents on the Microstructure Evolution and Toughness of 800 MPa Grade Low Carbon Bainite Deposited Metal

Author:

Liu JingwuORCID,Sun Jian,Wei Shitong,Lu Shanping

Abstract

In this work, three deposited metals with different nickel (Ni) contents were produced by active gas metal arc welding (GMAW) in order to explore the influence of Ni on the microstructure evolution and toughness of 800 MPa grade low carbon bainite deposited metal. The results showed that microstructure of the deposited metals mainly consisted of lath bainite, lath martensite, coalesced bainite (CB), and retained austenite (RA), and that the toughness was closely related to two factors: CB and RA. RA in deposited metal could improve the toughness, while the CB would deteriorate the toughness of deposited metal. As the Ni content increased, a large amount of CB was generated in the deposited metals. The RA content increased from 1.5% to 5.7% with the content of Ni increasing from 5.5% to 6.5%. However, the RA content did not increase when the Ni content increased from 6.5% to 7.5%. Additionally, the smallest control unit of toughness in 800 MPa grade low carbon bainite deposited metals is the Bain Packet (BP) from the perspective of crystallography characteristics. This work provided a reference for the chemical composition design of 800 MPa grade steel welding consumables and showed that the toughness of the deposited metal could be improved effectively by increasing the RA content while suppressing the formation of CB.

Funder

the major R&D Project of Liaoning Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3