The Effect of Incorporating Ultra-Fine Spherical Particles on Rheology and Engineering Properties of Commercial Ultra-High-Performance Grout

Author:

Lin Wei-TingORCID,Zhao Wen-Que,Chang Yi-Hua,Yang Jiann-Shi,Cheng An

Abstract

In this study, ultra-fine spherical particles of silica fume and reactive ultra-fine fly ash were added to a mixture of commercial ultra-high-performance grout (UHPG) with the aim of enhancing the rheological properties, compressive strength, compactness, and permeability. This commercial UHPG study was conducted in collaboration with Triaxis Corporation (Changsha city, Hunan province, China). A water-to-binder ratio of 0.21 and a binder-to-fine aggregates ratio of 1.17 were used as fixed parameters, and the binders were a combination of type-II Portland cement, sulphoaluminate cement, silica fume, and reactive ultra-fine fly ash (RUFA). Polycarboxylate superplasticizer powder was used to control the rheology. The results revealed excellent compressive strength, volume stability, and resistance to chloride penetration. Mercury intrusion porosimetry and scanning electron microscopy tests revealed that the medium-sized RUFA particles with small silica fume particles completely filled the spaces between large cement particles to achieve optimal densification. This mixture also produced dense hydration and calcium-silicate-hydrates colloids, which filled the microstructures of the UHPG resulting in excellent engineering properties and durability. This commercially available UHPG mix responded to excellent compressive strengths approaching 120 MPa and exhibited good workability with a loss of slump-flow rate up to 33% after 60 min. It also exhibited very low abrasion resistance (0.5%), stable shrinkage and expansion rates (stabilization over 10 days), very low chloride diffusion coefficient (less than 0.1 × 10−14 m2/s) with a denser microstructure. This commercial UHPG (UHPG-120) has been developed to meet the needs of the market.

Funder

Ministry of Science and Technology, Taiwan

TRIAXIS Co., Ltd

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3