In-Situ Reduction of Mo-Based Composite Particles during Laser Powder Bed Fusion

Author:

Guo Suxia,Zhou Weiwei,Zhou Zhenxing,Fan Yuchi,Luo Wei,Nomura Naoyuki

Abstract

Raw powders are processed in water during the freeze-dry pulsated orifice ejection method (FD-POEM), leading to the inclusion of oxygen impurities. This study proposes a strategy for removing the oxygen content and enhancing the mechanical performance of laser powder bed fusion (L-PBF) builds from powders using carbon nanotubes (CNTs) and H2 reduction. Spherical 1.5 wt.% CNT/Mo composite powders with uniform dispersion were fabricated via FD-POEM. The quantity of MoO2 decreased significantly, and a hexagonally structured Mo2C phase was simultaneously formed in the L-PBF build. The Mo2C with network structure was distributed along the boundaries of equiaxed Mo grains, leading to an increased Vickers hardness of the matrix. This study demonstrates the feasibility of fabricating oxygen-free and high-strength refractory parts during L-PBF for ultrahigh-temperature applications.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3