Author:
Guo Suxia,Zhou Weiwei,Zhou Zhenxing,Fan Yuchi,Luo Wei,Nomura Naoyuki
Abstract
Raw powders are processed in water during the freeze-dry pulsated orifice ejection method (FD-POEM), leading to the inclusion of oxygen impurities. This study proposes a strategy for removing the oxygen content and enhancing the mechanical performance of laser powder bed fusion (L-PBF) builds from powders using carbon nanotubes (CNTs) and H2 reduction. Spherical 1.5 wt.% CNT/Mo composite powders with uniform dispersion were fabricated via FD-POEM. The quantity of MoO2 decreased significantly, and a hexagonally structured Mo2C phase was simultaneously formed in the L-PBF build. The Mo2C with network structure was distributed along the boundaries of equiaxed Mo grains, leading to an increased Vickers hardness of the matrix. This study demonstrates the feasibility of fabricating oxygen-free and high-strength refractory parts during L-PBF for ultrahigh-temperature applications.
Funder
Japan Science and Technology Agency
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献