Nonclassical Nucleation—Role of Metastable Intermediate Phase in Crystal Nucleation: An Editorial Prefix

Author:

Zhang FajunORCID,Gavira José A.ORCID,Lee Geun Woo,Zahn Dirk

Abstract

Classical nucleation theory (CNT), which was established about 90 years ago, represents the most commonly used theory in describing nucleation processes. For a fluid-to-solid phase transition, CNT states that the solutes in a supersaturated solution reversibly form small clusters. Once a cluster reaches its critical size, it becomes thermodynamically stable and is favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations, and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists in parallel to the initial supersaturated solution and the final crystals. These MIPs can be high-density liquid phases, mesoscopic clusters, or preordered states. In this Special Issue, we focus on the role of the various MIPs in the early stage of crystal nucleation of organic materials, metals and alloys, aqueous solutions, minerals, colloids, and proteins, and thus on various scenarios of nonclassical pathways of crystallization.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3