Evaluation of Ground Temperature Changes by the Operation of the Geothermal Heat Pump System and Climate Change in Korea

Author:

Kim Seong-Kyun,Lee Youngmin

Abstract

To evaluate long-term temperature changes caused by the operation of a geothermal heat pump (GHP) system, temperatures near borehole heat exchangers (BHEs) of the GHP system in Korea were measured. The temperature measurements showed increasing rates of 0.135 °C/year at a depth of 10 m and 0.118 °C/year at a depth of 50 m for approximately 10 years. Simulations for the analysis of climate change effects on measured temperature fluctuations showed that a rate of temperature increase was 0.010 °C/year at a depth of 50 m owing to changes in surface air temperatures (SATs). From two-dimensional heat transfer simulations, the discharged heat measuring 16.7 W/m in the cooling season and extracted heat measuring 12.4 W/m in the heating season could cause an annual mean temperature increase of 0.109 °C over approximately 10 years. Additionally, results of simulations for future prediction of ground temperatures assuming that the GHP system retains its level of operation showed that in 2050, temperature at a depth of 50 m will increase by approximately 3.00 °C from that in 2005. Thus, balancing the heat discharged into and extracted from the ground by considering climate change to minimize long-term changes in the ground temperature is necessary.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3