Sediment Morphology and the Flow Velocity Field in a Gully Pot: An Experimental Study

Author:

Rietveld Matthijs,de Rijke Demi,Langeveld JeroenORCID,Clemens FrancoisORCID

Abstract

Urban runoff (re)mobilises solids present on the street surface and transport them to urban drainage systems. The solids reduce the hydraulic capacity of the drainage system due to sedimentation and on the quality of receiving water bodies due to discharges via outfalls and combined sewer overflows (CSOs) of solids and associated pollutants. To reduce these impacts, gully pots, the entry points of the drainage system, are typically equipped with a sand trap, which acts as a small settling tank to remove suspended solids. This study presents data obtained using Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements in a scale 1:1 gully to quantify the relation between parameters such as the gully pot geometry, discharge, sand trap depth, and sediment bed level on the flow field and subsequently the settling and erosion processes. The results show that the dynamics of the morphology of the sediment bed influences the flow pattern and the removal efficiency in a significant manner, prohibiting the conceptualization of a gully pot as a completely mixed reactor. Resuspension is initiated by the combination of both high turbulent fluctuations and high mean flow, which is present when a substantial bed level is present. In case of low bed levels, the overlaying water protects the sediment bed from erosion.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3