Research on Recognition of Road Hypnosis in the Typical Monotonous Scene

Author:

Shi Huili1ORCID,Chen Longfei1ORCID,Wang Xiaoyuan12ORCID,Wang Bin1,Wang Gang1,Zhong Fusheng1

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266000, China

2. Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment of Shandong, Qingdao 266000, China

Abstract

Road traffic safety can be influenced by road hypnosis. Accurate detection of the driver’s road hypnosis is a very important function urgently required in the driver assistance system. Road hypnosis recurs frequently in a certain period, and it tends to occur in a typical monotonous scene such as a tunnel or a highway. Taking the scene of a tunnel or a highway as a typical example, road hypnosis was studied through simulated driving experiments and vehicle driving experiments. A road hypnosis recognition model based on principal component analysis (PCA) and a long short-term memory network (LSTM) was proposed, where PCA was used to extract various parameters collected by the eye tracker, and the LSTM model was constructed to identify road hypnosis. The accuracy rates of 93.27% and 97.01% in simulated driving experiments and vehicle driving experiments were obtained. The proposed method was compared with k-nearest neighbor (KNN) and random forest (RF). The results showed that the proposed PCA-LSTM model had better performance. This paper provides a novel and convenient method to realize the driver’s road hypnosis detection function of the intelligent driver assistance system in practical applications.

Funder

Natural Science Foundation of Shandong Province

Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment of Shandong Province

Qingdao Top Talent Program of Entrepreneurship and Innovation

Qingdao University of Science and Technology Postgraduate Independent Research and Innovation Project

National Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3