Pulse Current of Multi-Needle Negative Corona Discharge and Its Electromagnetic Radiation Characteristics

Author:

Wang Chuang,Chen Xi,Ouyang Jiting,Li Tie,Fu Jialu

Abstract

Negative corona discharge occurs widely in high voltage transmission lines and other “high voltage” uses, which can cause strong electromagnetic interference (EMI). In this research, the pulse current of multi-needle negative corona discharge and its electromagnetic (EM) radiation characteristics were studied and compared with that of single-needle negative corona discharge. A dipole radiation model was established to analyze the EM radiation characteristics of the negative corona discharge. The results show that the Trichel pulse discharge process of one discharge needle in multi-needle discharge structure will inhibit the discharge of the other discharge needles. It is only when the voltage reaches a certain threshold will the current and EM radiation fields of multi-needle discharge structure with a significant increasing of amolitude. The frequency of EM radiation of negative corona discharge is not affected by the number of needles, but is only related to ambient air pressure. This research provides a basis for detecting corona discharge sources in different conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 光学微腔磁传感器(特邀);ACTA PHOTONICA SINICA;2024

2. Analysis of static electricity-induced luminescent based on HLAC features;2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE);2023-09-06

3. Negative Corona Discharge from Needle—Plane Electrode: Experiment And Simulation Studies;2023 4th International Conference on High Voltage Engineering and Power Systems (ICHVEPS);2023-08-06

4. Characterization of DC corona discharge current pulses using high-frequency measurement techniques;Measurement;2023-08

5. Measuring low-current discharges from grounded rods under high background electric fields;Electric Power Systems Research;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3