Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid

Author:

Yu Yue,Wada Keiji

Abstract

Owing to the acute energy shortage issue and the increasing energy demands of information and communication technology systems worldwide, the development of a DC microgrid that can utilize renewable energy sources, such as wind and photovoltaic power, has been accelerated. Therefore, power management for DC microgrid distributed systems is promoted to achieve high reliability and efficiency in power distribution systems. For industry and power transmission applications such as data centers, power management with the help of DC converters is highly recommended. In this paper, we propose a prototype of a power distribution system with a triple active bridge (TAB) converter for data centers in the DC microgrid. Moreover, we introduce a power management approach for a distribution system using the TAB converter. Finally, we perform simulations of the proposed configuration to verify the controllability of the circuit performance and the high reliability of the system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Brief Review on Triple Active Bridge DC-DC Converter;2023 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2023-02-18

2. A Renwable Electricity-Hydrogen-Integrated Hybrid DC Traction Power System;2021 IEEE Southern Power Electronics Conference (SPEC);2021-12-06

3. Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid;Energies;2020-08-06

4. Modified Isolated Triple-Active Bridge Bidirectional DC–DC Converter for Energy Storage Application;Lecture Notes in Electrical Engineering;2020-07-26

5. Normalization Design of Inductances in Triple Active Bridge Converter for Household Renewable Energy System;IEEJ Journal of Industry Applications;2020-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3