Recovery of Palladium and Gold from PGM Ore and Concentrate Leachates Using Fe3O4@SiO2@Mg-Al-LDH Nanocomposite

Author:

Biata Nkositetile Raphael,Jakavula Silindokuhle,Moutloali Richard MotlhaletsiORCID,Nomngongo Philiswa NosizoORCID

Abstract

In this work, we developed a core–shell nanostructured magnetic composite by functionalizing layered double hydroxide (Mg-Al-LDH) microspheres with Fe3O4@SiO2, for the recovery of Au(III) and Pd(II). The magnetic Fe3O4 nanoparticles provided effective magnetic separation of the adsorbent from aqueous solutions. While silica protected the Fe3O4 nanoparticles, increased the adsorption sites and the stability of the material. Finally, Mg-Al-LDH was chosen because of its large anion sorption capacities which lead to the improved adsorption capacity of Fe3O4@SiO2@ Mg-Al-LDH nanocomposite. The morphology and structural composition of the nanocomposite were characterized using various analytical techniques. It was satisfactorily established that silica was coated on iron oxide and layered double hydroxide was immobilized on Fe3O4@SiO2. Parameters affecting adsorption of the composite towards Au(III) and Pd(II), such as effects of sample pH, mass of adsorbent, extraction time, eluent type and concentration were investigated using response methodology based on central composite design. Maximum adsorption capacities of Fe3O4@SiO2@ Mg-Al-LDH for Au(III) and Pd(II) were 289 mg g−1 and 313 mg g−1, respectively. Under optimum conditions, the proposed method displayed good analytical performance suggesting that the adsorbent is a good candidate for quantitative extraction of Au(III) and Pd(II) from secondary sources. Additionally, %recoveries ranging from 85%–99.6% were obtained revealing that Fe3O4@SiO2@ Mg-Al-LDH could selectively extract Au(III) and Pd(II) from leaching solutions of SARM 107 PGM ore and SARM 186 PGM concentrate.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3