Dynamic Response Mechanism of Impact Instability Induced by Dynamic Load Disturbance to Surrounding Rock in High Static Loading Roadway

Author:

Li JiazhuoORCID,Guo PenghuiORCID,Cui Heng,Song Shikang,Zhao Wentao,Chu Jiaqi,Xie Wenhao

Abstract

Deep high static loading roadway is extremely prone to rock burst under dynamic load disturbance. The “force-energy criterion” for the failure of surrounding rock in such deep roadways and the “energy criterion” for the rock burst was established by considering the stress and energy evolution characteristics of rock burst under this circumstance. Under the engineering background of the main roadway in No.1 mining area of Gaojiapu Coal Mine in Binchang Mining Area, Shaanxi Province, China, the partial stress field and distortion energy field of surrounding rock in the main roadway and the spatial-temporal evolution laws under dynamic load disturbance were simulated and analyzed by using a built-in dynamic module of FLAC3D. Results show that after the dynamic load disturbance, the partial stress and distortion energy are concentrated in the shallow part at two walls of the roadway in the early phase. With the continuous propagation of dynamic load stress wave, the partial stress and distortion energy are transferred to the deep part. The sudden high-energy release occurred in the peak zone of partial stress, leading to the plastic failure of coal and rock mass. Subsequently, the distortion energy was fully accumulated in the original plastic zone and transferred from shallow surrounding rocks to the deep surrounding rocks in the roadway, where the partial stress and distortion energy of coal and rock mass reached the yield conditions. Thus, the original plastic zone was sharply expanded, thereby forming a new plastic zone. The coal and rock mass experienced an approximately static failure when no residual energy (ΔU) was found in it. When ΔU > 0, the rock mass experienced dynamic failure, and ΔU was mainly the volume transformation energy, which is approximately one-half of the total elastic strain energy. ΔU was transformed into the initial kinetic energy of broken coal and rock mass. Thus, the coal and rock mass are burst out. In severe cases, this condition was manifested by the rock burst in the main roadway. An optimization scheme of prevention and control measures for rock burst was proposed on the basis of the above conclusions. The microseismic activity laws before and after the unloading were compared, and a good effect was achieved. The research results can lay a theoretical foundation for predicting and preventing rock bursts in coal mines by actively regulating the disaster-pregnant environment and mitigating the disaster-inducing conditions.

Funder

Jiazhuo Li

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference42 articles.

1. Analysis of exploration, potential reserves and high efficient utilization of coal in China;Teng;Acta Geophys.,2016

2. Characteristics of stress evolution on the thrust fault plane during the mining;Wang;J. China Coal Soc.,2019

3. Failure characteristics induced by unloading disturbance and corresponding mechanical mechanism of the coal-seam floor in deep mining

4. Study on Microseism-induced rock burst revealed by microseismic monitoring;Miao;Chin. J. Geotech. Eng.,2011

5. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3