Effect of Basicity on the Sulfur Precipitation and Occurrence State in Kambara Reactor Desulfurization Slag

Author:

Zhu Renlin,Li JianliORCID,Jiang Jiajun,Yu Yue,Zhu HangyuORCID

Abstract

Kambara Reactor (KR) desulfurization slag used as slag-making material for converter smelting can promote early slag melting in the initial stage and improve the efficiency of dephosphorization. However, its direct utilization as a slagging material can increase the sulfur content in molten steel since KR desulfurization slag contains 1~2.5% sulfur. Therefore, this research focuses on the effect of basicity on the precipitation behavior and occurrence state of sulfur in KR desulfurization slag in order to provide an academic reference for the subsequent removal of sulfur from slag through an oxidizing atmosphere. The solidification process of slag was simulated by the Factsage8.0. The slag samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), and the amount of CaS grains was analyzed using Image-ProPlus6.0 software. The thermodynamic calculation showed that the crystallization temperature of CaS in the molten slag gradually decreased with the increase in basicity, and the CaS crystals in the molten slag mainly existed in the matrix phase and at the silicate grain boundaries. A large number of CaS grains were precipitated along the silicate grain boundary in low-basicity (R = 2.5 and 3.0) slags and fewer CaS grains were precipitated along the silicate grain boundary, while the CaS grain density in the matrix phase was higher in the high-basicity (R = 3.5, 4.0, 4.5) slag. With the increase in basicity, the number of CaS grains gradually decreased, and the CaS grain sizes in slag sample increased gradually. The sulfur in the synthetic slag was in the form of CaS crystals and the amorphous phase, and the content of amorphous sulfur gradually increased with increasing basicity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3