Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece)

Author:

Christogerou AngelikiORCID,Lampropoulou Paraskevi,Papoulis DimitriosORCID,Angelopoulos George N.ORCID

Abstract

The objective of this study was to investigate the valorization potential of clayey overburden sterile materials from lignite-mining activities in the manufacturing of traditional ceramics. This study aims to contribute toward the sustainable management and use of such waste materials in line with the environmental objectives of the 2030 agenda. To assess this issue, clayey steriles were incorporated in a white clay-body at 20, 50, and 80 wt%, whereas reference samples were also formed from the individual raw materials. Laboratory processing of the ceramics was performed by dry pressing loose powder into rectangular samples and firing at 1000 °C for 4 h. Characterization of the raw materials included chemical, mineralogical, and thermal analysis. The fired bodies were tested for their total linear shrinkage, apparent porosity, water absorption, bulk density, and bending strength according to the relevant standards. The microstructural evolution of the final bodies was analyzed by scanning electron microscopy, which observed differences related to the addition of the steriles. The results showed that the tested clayey steriles can be utilized up to 50 wt% as a secondary raw material in the production of ceramic materials (e.g., bricks) with comparable properties to the reference clay-bodies. Furthermore, the color of the final samples changed from white-creamy to reddish as the content of clayey sterile materials increased in the raw mix.

Funder

Operational Programme Competitiveness, Entrepreneurship and Innovation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference38 articles.

1. Mining Waste: A Potential Ceramic Resource—European Training Network for the Remediation and Reprocessing of Sulfidic Mining Waste Siteshttps://etn-sultan.eu/2021/02/25/mining-waste-a-potential-ceramic-resource/

2. Mullite-Based Ceramics from Mining Waste: A Review

3. Mining Waste and Its Sustainable Management: Advances in Worldwide Research

4. Sustainable Land Management in Mining Areas in Serbia and Romania

5. Total and partial digestion of sediments for the evaluation of trace element environmental pollution

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3