Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure

Author:

Ding Ke,Wang Lianguo,Ren Bo,Li Zhaolin,Wang Shuai,Jiang Chongyang

Abstract

In this study, CO2 seepage of sandstone samples from the Taiyuan-Shanxi Formation coal seam roof in Ordos Basin, China, under temperature-stress coupling was studied with the aid of the TAWD-2000 coal rock mechanics-seepage test system. Furthermore, the evolution law and influencing factors on permeability for CO2 in sandstone samples with temperature and axial pressure were systematically analyzed. The results disclose that the permeability of sandstone decreases with the increase in stress. The lower the stress is, the more sensitive the permeability is to stress variation. High stress results in a decrease in permeability, and when the sample is about to fail, the permeability surges. The permeability of sandstone falls first and then rises with the rise of temperature, which is caused by the coupling among the thermal expansion of sandstone, the desorption of CO2, and the evaporation of residual water in fractures. Finally, a quadratic function mathematical model with a fitting degree of 98.2% was constructed between the temperature-stress coupling effect and the permeability for CO2 in sandstone. The model provides necessary data support for subsequent numerical calculation and practical engineering application. The experimental study on the permeability characteristics for CO2 in sandstone under high temperature and overburden pressure is crucial for evaluating the storage potential and predicting the CO2 migration evolution in underground coal gasification coupling CO2 storage projects.

Funder

National Key Research and Development Program of China

Natural Science Research of Jiangsu Higher Education Institutions of China

China Postdoctoral Science Foundation funded project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3