Pre-Pegmatite Stage in Peralkaline Magmatic Process: Insights from Poikilitic Syenites from the Lovozero Massif, Kola Peninsula, Russia

Author:

Mikhailova Julia A.,Pakhomovsky Yakov A.,Goychuk Olga F.,Kalashnikov Andrey O.ORCID,Bazai Ayya V.,Yakovenchuk Victor N.

Abstract

The Lovozero peralkaline massif (Kola Peninsula, Russia) is widely known for its unique mineral diversity, and most of the rare metal minerals are found in pegmatites, which are spatially associated with poikilitic rocks (approximately 5% of the massif volume). In order to determine the reasons for this relationship, we have investigated petrography and the chemical composition of poikilitic rocks as well as the chemical composition of the rock-forming and accessory minerals in these rocks. The differentiation of magmatic melt during the formation of the rocks of the Lovozero massif followed the path: lujavrite → foyaite → urtite (magmatic stage) → pegmatite (hydrothermal stage). Yet, for peralkaline systems, the transition between magmatic melt and hydrothermal solution is gradual. In the case of the initially high content of volatiles in the melt, the differentiation path was probably as follows: lujavrite → foyaite (magmatic stage) → urtitization of foyaite → pegmatite (hydrothermal stage). Poikilitic rocks were formed at the stage of urtitization, and we called them pre-pegmatites. Indeed, the poikilitic rocks have a metasomatic texture and, in terms of chemical composition, correspond to magmatic urtite. The reason for the abundance of rare metal minerals in pegmatites associated with poikilitic rocks is that almost only one nepheline is deposited during urtitization, whereas during the magmatic crystallization of urtite, rare elements form accessory minerals in the rock and are less concentrated in the residual solution.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3