Low-Toxicity Self-Photosensitized Biohybrid Systems for Enhanced Light-Driven H2 Production

Author:

Wang Yuelei1,Liu Yuqi1,Bai Long1,Wang Jueyu1,Zhao Na1,Cui Daizong1,Zhao Min1

Affiliation:

1. College of Life Science, Northeast Forestry University, Harbin 150040, China

Abstract

Nanoparticles (NPs) represent a potential optoelectronic source capable of significantly boosting hydrogen production; however, their inevitable cytotoxicity may lead to oxidative damage of bacterial cell membranes. In this study, we employed non-photosynthetic Escherichia coli K-12 as a model organism and utilized self-assembled cadmium sulfide (CdS) nanoparticles to construct a low-toxicity and hydrogen-production-enhancing self-photosensitive hybrid system. To mitigate the cytotoxicity of CdS NPs and synthesize biocompatible CdS NPs on the cell surface, we employed engineered E. coli (efeB/OE) for bioremediation, achieving this goal through the overexpression of the peroxidase enzyme (EfeB). A comparative analysis with E. coli–CdS revealed a significant downregulation of genes encoding oxidative stress proteins in efeB/OE–CdS post-irradiation. Atomic force microscopy (AFM) confirmed the stability of bacterial cell membranes. Due to the enhanced stability of the cell membrane, the hydrogen yield of the efeB/OE–CdS system increased by 1.3 times compared to the control, accompanied by a 49.1% reduction in malondialdehyde (MDA) content. This study proposes an effective strategy to alleviate the toxicity of mixed biological nanoparticle systems and efficiently harness optoelectronic electrons, thereby achieving higher hydrogen production in bioremediation.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference58 articles.

1. Global clean energy in 2017;King;Science,2017

2. The matter of a clean energy future;Turner;Science,2022

3. Solar Energy Catalysis;Sun;Angew. Chem. Int. Ed.,2022

4. Synthesis, analysis and electrical properties of silicon doped BN nanowires;Zhuang;J. Alloys Compd.,2018

5. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production;Sakimoto;Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3