The Impact of Candida albicans in the Development, Kinetics, Structure, and Cell Viability of Biofilms on Implant Surfaces—An In Vitro Study with a Validated Multispecies Biofilm Model

Author:

Bravo Enrique1ORCID,Arce Marion23,Ribeiro-Vidal Honorato4ORCID,Herrera David1ORCID,Sanz Mariano1

Affiliation:

1. ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Dentistry, Complutense University, 28040 Madrid, Spain

2. Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile

3. Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile

4. Department of Periodontology, Faculty of Dentistry, University of Porto, 4200-393 Porto, Portugal

Abstract

This study aimed to evaluate the impact of Candida albicans on subgingival biofilm formation on dental implant surfaces. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to compare biofilm structure and microbial biomass in the presence and absence of the fungus after periods of 24, 48, and 72 h. Quantitative polymerase chain reaction (qPCR) was used to quantify the number of viable and total micro-organisms for each of the biofilm-forming strains. A general linear model was applied to compare CLSM and qPCR results between the control and test conditions. The biofilm developed with C. albicans at 72 h had a higher bacterial biomass and a significantly higher cell viability (p < 0.05). After both 48 and 72 h of incubation, in the presence of C. albicans, there was a significant increase in counts of Fusobacterium nucleatum and Porphyromonas gingivalis and in the cell viability of Streptococcus oralis, Aggregatibacter actinomycetemcomitans, F. nucleatum, and P. gingivalis. Using a dynamic in vitro multispecies biofilm model, C. albicans exacerbated the development of the biofilm grown on dental implant surfaces, significantly increasing the number and cell viability of periodontal bacteria.

Funder

ETEP Research Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3