Non-Invasive Monitoring of the Technical Condition of Power Units Using the FAM-C and FDM-A Electrical Methods

Author:

Zieja MariuszORCID,Gębura Andrzej,Szelmanowski Andrzej,Główczyk BartłomiejORCID

Abstract

This article presents the selected results of analytical and structural work conducted at the Air Force Institute of Technology (pl. ITWL) in the field of building a measuring apparatus for non-invasive monitoring of the technical condition of aircraft power units. Presented innovative FAM-C and FDM-A methods allow for observation of frequency modulation parameters as well as identification and diagnostic classification of particular mechanical subassemblies supplying the on-board generator and thus enable non-invasive monitoring of technical condition of the aircraft power unit and the aircraft propulsion system. The main purpose of this article is to present the measurement apparatus errors that occur in the signal conditioning system in the FAM-C and FDM-A methods. In spite of the fact that the measuring instrument was built on the basis of digital technology and that it uses typical solutions of electronic frequency measurement, due to the specificity of the applied diagnostic method there occur specific measuring errors which are presented in this article.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference31 articles.

1. Condition monitoring and fault diagnosis of planetary gearboxes: A review

2. Reconstrucion of sparse and nonsparse signals from a reduced set of samples;Stankovic;ETF J. Electr. Eng.,2015

3. Presentations in FAM-C And FDM-A Methods and Some Problems of a Signals Theory

4. Engine Sensing Technology Hardware & Software to Monitor Engine Rotor Dynamic Using Blade Time-of-Arrival and Tip Clearance;Flotow,2002

5. Praktyczna Diagnostyka Maszyn i Jej Teoretyczne Podstawy;Lindstedt,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3