An Air Route Network Planning Model of Logistics UAV Terminal Distribution in Urban Low Altitude Airspace

Author:

Li Shan,Zhang Honghai,Li Zhuolun,Liu Hao

Abstract

Traditional terminal logistics distribution in urban areas is mainly concentrated on the ground, which leads to increasingly serious air pollution and traffic congestion. With the popularization of unmanned aerial vehicle (UAV) techniques and the reform of low altitude airspace, terminal logistics distribution is expected to be carried out by drones. Therefore, it is of great significance to construct a reasonable air route network for logistics UAV to ensure the safety and efficiency of operations. In this paper, a single route planning model and an air route network planning model for UAV were constructed by fully considering the complex urban low altitude environment, the flight performance of UAV and the characteristics of logistics tasks to regulate the flights of drones. Then, taking Jiangjun Road Campus of Nanjing University of Aeronautics and Astronautics as an example, the improved cellular automata (CA) was adopted to search for the optimal route between different waypoints, and the optimal spanning tree algorithm was used to construct the route network. The experimental results demonstrated that the improved CA could greatly reduce search time and obtain the optimal route while enhancing safety. With the satisfaction of the voyage, the needs of logistics and distribution constraints, a network that had smaller intersection points and redundancy was generated. The models and core ideas proposed in this paper can not only regulate operation of drones but also provide a solid foundation for the distribution of logistics UAV in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference22 articles.

1. Overview on traffic management of urban air mobility (UAM) with eVTOL aircraft;Li;J. Trfc. Trnsp. Eng.,2020

2. Review of Research on Future Urban Air Mobility (UAM) Management;Zhang;Acta Aeronaut. Astronaut. Sin.,2020

3. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges

4. Fast-Forwarding to a Future of on-Demand Urban Air Transportationhttps://www.uber.com/elevate.pdf

5. Blueprint for the Sky: The Roadmap for the Safe Integration of Autonomous Aircrafthttps://storage.googleapis.com/blueprint/Airbus_UTM_Blueprint.pdf

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3