Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution

Author:

Liu Yujing,Niu Dongxiao

Abstract

With the proposed goals of reaching its “carbon peak” by 2030 and becoming “carbon neutral” by 2060, China will comprehensively build a diversified, efficient and clean energy system. The differences in China’s resource endowments have made the development of carbon emission reduction in the thermal power industry uncoordinated in various regions. Therefore, it is necessary to optimize the method for measuring thermal power carbon emission efficiency and determine the impact of regional development imbalances on the carbon emission efficiency of thermal power. For this article, we used the stochastic frontier analysis method and selected a variety of influencing factors as technical inefficiency items. After that, we measured the thermal power carbon emission efficiency in 30 provinces and municipalities (autonomous regions) in China in the past 10 years, and it was found that the efficiency was increasing yearly and showed obvious spatial differences. The impact of the clean energy substitution effect on the thermal power carbon emission efficiency cannot be ignored. After performing a coupled and coordinated analysis on the efficiency of thermal carbon emission in various regions and its influencing factors, the three indicators of power consumption intensity, urbanization level and clean energy substitution effect were selected. The weight of the indicator subsystem was determined in view of the estimation of the technical inefficiency. The results of the coupling and coordination analysis show that the degree of coupling and coordination of thermal power carbon emission efficiency is increasing yearly and presents a distribution of “high in the eastern region and low in the western region”. Therefore, all provinces need to vigorously carry out clean replacement work to enhance the coordinated development of carbon emission reduction in the thermal power industry and the level of regional economic development.

Funder

the 2018 Key Projects of Philosophy and Social Sciences Research, Ministry of Education, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3