On Site Improvement of Fines-Rich Unbound Granular Materials with Hydrophobic Polymer and Lime

Author:

Hopkins Cameron,Cameron Donald,Rahman Md MizanurORCID

Abstract

Many roads that were initially designed for relatively low traffic volumes need re-surfacing or partial replacement of the unbound granular material to satisfy current traffic demand. Significant research efforts based on laboratory studies have been seen in the literature to characterize the suitability of virgin materials, which is relatively expensive and unsustainable. Therefore, the object of this study is the in situ recycling of existing materials in two road sections by improving their properties with a suitable additive. A hydrophobic synthetic polymer was chosen for two trials due to the high plasticity of fines of the in situ materials and a high chance of water intrusion in the low-lying plains in Adelaide. The extensive laboratory characterization shows that hydrophobicity is imparted in capillary rise tests, improved drainage in permeability tests, and greater matric suction at the same moisture content. Furthermore, the unconfined compressive strength was increased. The repeated loading triaxial testing showed higher stiffness and lowered permanent strain to withstand higher traffic volume. In general, in situ recycling is adaptable and considered to be cheaper and sustainable. The estimated current costs and carbon footprints are presented for re-construction and in situ recycling with dry powder polymer, or solely with lime, to help construction planning.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference39 articles.

1. Reducing the Environmental Impact of Road Construction;Newman,2014

2. Funding Local Roads,2014

3. Guide to Pavement Technology Part 4(d): Stabilised Materials;Andrews,2006

4. Effect of the Use of a Polymeric Stabilizing Additive on Unconfined Compressive Strength of Soils

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3