Efficient Neighbour Feedback Based Trusted Multi Authenticated Node Routing Model for Secure Data Transmission

Author:

Bondada Praveen,Samanta DebabrataORCID,Chaudhry Shehzad AshrafORCID,Zikria Yousaf BinORCID,Ishmanov Farruh

Abstract

The Mobile Ad Hoc Network (MANET) is a network that does not have a fixed infrastructure. Migratory routes and related hosts that are connected via wireless networks self-configure it. Routers and hosts are free to wander, and nodes can change the topology fast and unexpectedly. In emergencies, such as natural/human disasters, armed conflicts, and emergencies, the lowest configuration will ensure ad hoc network applicability. Due to the rapidly rising cellular service requirements and deployment demands, mobile ad-hoc networks have been established in numerous places in recent decades. These applications include topics such as environmental surveillance and others. The underlying routing protocol in a given context has a significant impact on the ad hoc network deployment power. To satisfy the needs of the service level and efficiently meet the deployment requirements, developing a practical and secure MANET routing protocol is a critical task. However, owing to the intrinsic characteristics of ad hoc networks, such as frequent topology changes, open wireless media and limited resources, developing a safe routing protocol is difficult. Therefore, it is vital to develop stable and dependable routing protocols for MANET to provide a better packet delivery relationship, fewer delays, and lower overheads. Because the stability of nodes along this trail is variable, the route discovered cannot be trusted. This paper proposes an efficient Neighbour Feedback-based Trusted Multi Authenticated Node (NFbTMAN) Routing Model. The proposed model is compared to traditional models, and the findings reveal that the proposed model is superior in terms of data security.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3