Abstract
A solution to reduce the emission and generation cost of conventional fossil-fuel-based power generators is to integrate renewable energy sources into the electrical power system. This paper outlines an efficient hybrid particle swarm gray wolf optimizer (HPS-GWO)-based optimal power flow solution for a system combining solar photovoltaic (SPV) and wind energy (WE) sources with conventional fuel-based thermal generators (TGs). The output power of SPV and WE sources was forecasted using lognormal and Weibull probability density functions (PDFs), respectively. The two conventional fossil-fuel-based TGs are replaced with WE and SPV sources in the existing IEEE-30 bus system, and total generation cost, emission and power losses are considered the three main objective functions for optimization of the optimal power flow problem in each scenario. A carbon tax is imposed on the emission from fossil-fuel-based TGs, which results in a reduction in the emission from TGs. The results were verified on the modified test system that consists of SPV and WE sources. The simulation results confirm the validity and effectiveness of the suggested model and proposed hybrid optimizer. The results confirm the exploitation and exploration capability of the HPS-GWO algorithm. The results achieved from the modified system demonstrate that the use of SPV and WE sources in combination with fossil-fuel-based TGs reduces the total system generation cost and greenhouse emissions of the entire power system.
Funder
Soonchunhyang University
University Innovation Support Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献