An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer

Author:

Riaz MuhammadORCID,Hanif Aamir,Masood Haris,Khan Muhammad Attique,Afaq Kamran,Kang Byeong-Gwon,Nam YunyoungORCID

Abstract

A solution to reduce the emission and generation cost of conventional fossil-fuel-based power generators is to integrate renewable energy sources into the electrical power system. This paper outlines an efficient hybrid particle swarm gray wolf optimizer (HPS-GWO)-based optimal power flow solution for a system combining solar photovoltaic (SPV) and wind energy (WE) sources with conventional fuel-based thermal generators (TGs). The output power of SPV and WE sources was forecasted using lognormal and Weibull probability density functions (PDFs), respectively. The two conventional fossil-fuel-based TGs are replaced with WE and SPV sources in the existing IEEE-30 bus system, and total generation cost, emission and power losses are considered the three main objective functions for optimization of the optimal power flow problem in each scenario. A carbon tax is imposed on the emission from fossil-fuel-based TGs, which results in a reduction in the emission from TGs. The results were verified on the modified test system that consists of SPV and WE sources. The simulation results confirm the validity and effectiveness of the suggested model and proposed hybrid optimizer. The results confirm the exploitation and exploration capability of the HPS-GWO algorithm. The results achieved from the modified system demonstrate that the use of SPV and WE sources in combination with fossil-fuel-based TGs reduces the total system generation cost and greenhouse emissions of the entire power system.

Funder

Soonchunhyang University

University Innovation Support Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3