Immobilization of Hazardous Wastes on One-Part Blast Furnace Slag-Based Geopolymers

Author:

Paz-Gómez Daniela CarolinaORCID,Vilarinho Inês SilveirinhaORCID,Pérez-Moreno Silvia M.ORCID,Carvalheiras JoãoORCID,Guerrero José Luis,Novais Rui MiguelORCID,Seabra Maria PaulaORCID,Ríos Guillermos,Bolívar Juan PedroORCID,Labrincha João António

Abstract

The immobilization of hazardous wastes in ordinary Portland cement (OPC)-based materials has been widely studied and implemented. OPC-based materials have a high carbon footprint associated with their production and geopolymer materials are a sustainable and eco-friendly alternative. Therefore, this work aimed to immobilize two hazardous industrial wastes: copper wastewater sludge and phosphogypsum in one-part geopolymer materials. For that purpose, the precursor was partially substituted by these wastes (5, 10 and 20 wt.%) in the formulations. The geopolymer fresh and hardened state properties were evaluated, and the immobilisation of pollutants was determined through leaching tests. In phosphogypsum pastes (PG5, PG10 and PG20) it was observed that the compressive strength decreased with the increase in its amount, varying between 67 MPa and 19 MPa. In copper sludge pastes, the compressive strength of the specimens (CWS5 and CWS10) reached ~50 MPa. The mortars, MPG10 and MCWSs10, had compressive strengths of 13 MPa and 21 MPa, respectively. Leaching tests showed that pastes and mortars immobilise the hazardous species of the wastes, except for As from copper sludge, whose the best result was found in the compact paste (CWSs10) that leached 2 mg/kg of As. Results suggest that optimized compositions are suitable for the construction sector.

Funder

Ministerio de Ciencia e Innovación

Agencia de Innovación y Desarrollo de Andalucía IDEA

Portuguese Foundation for Science and Technology/Ministry of Science Technology and Higher Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3