Cluster Analysis of Public Bike Sharing Systems for Categorization

Author:

Mátrai TamásORCID,Tóth János

Abstract

The world population will reach 9.8 billion by 2050, with increased urbanization. Cycling is one of the fastest developing sustainable transport solutions. With the spread of public bike sharing (PBS) systems, it is very important to understand the differences between systems. This article focuses on the clustering of different bike sharing systems around the world. The lack of a comprehensive database about PBS systems in the world does not allow comparing or evaluating them. Therefore, the first step was to gather data about existing systems. The existing systems could be categorized by grouping criterions, and then typical models can be defined. Our assumption was that 90% of the systems could be classified into four clusters. We used clustering techniques and statistical analysis to create these clusters. However, our estimation proved to be too optimistic, therefore, we only used four distinct clusters (public, private, mixed, other) and the results were acceptable. The analysis of the different clusters and the identification of their common features is the next step of this line of research; however, some general characteristics of the proposed clusters are described. The result is a general method that could identify the type of a PBS system.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference52 articles.

1. World Population Prospects The 2012 Revision Volume I: Comprehensive Tables,2013

2. World Urbanization Prospects: The 2018 Revision,2019

3. Walking, Cycling and Congestion—Implementer’s Guide to Using the FLOW Tools for Multimodal Assessments;Fenton,2018

4. Congestion from a Multimodal Perspective

5. Spatial Econometrics – Usage in Transportation Sciences: A Review Article

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3