An Enhanced Neural Network Algorithm with Quasi-Oppositional-Based and Chaotic Sine-Cosine Learning Strategies

Author:

Xiong Xuan1ORCID,Li Shaobo2ORCID,Wu Fengbin2ORCID

Affiliation:

1. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

Abstract

Global optimization problems have been a research topic of great interest in various engineering applications among which neural network algorithm (NNA) is one of the most widely used methods. However, it is inevitable for neural network algorithms to plunge into poor local optima and convergence when tackling complex optimization problems. To overcome these problems, an improved neural network algorithm with quasi-oppositional-based and chaotic sine-cosine learning strategies is proposed, that speeds up convergence and avoids trapping in a local optimum. Firstly, quasi-oppositional-based learning facilitated the exploration and exploitation of the search space by the improved algorithm. Meanwhile, a new logistic chaotic sine-cosine learning strategy by integrating the logistic chaotic mapping and sine-cosine strategy enhances the ability that jumps out of the local optimum. Moreover, a dynamic tuning factor of piecewise linear chaotic mapping is utilized for the adjustment of the exploration space to improve the convergence performance. Finally, the validity and applicability of the proposed improved algorithm are evaluated by the challenging CEC 2017 function and three engineering optimization problems. The experimental comparative results of average, standard deviation, and Wilcoxon rank-sum tests reveal that the presented algorithm has excellent global optimality and convergence speed for most functions and engineering problems.

Funder

National Natural Science Foundation of China

Reserve Project of Central Guiding Local Science and Technology Development Funds

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3