Detecting a Photon-Number Splitting Attack in Decoy-State Measurement-Device-Independent Quantum Key Distribution via Statistical Hypothesis Testing

Author:

Chen Xiaoming,Chen LeiORCID,Yan Yalong

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is innately immune to all detection-side attacks. Due to the limitations of technology, most MDI-QKD protocols use weak coherent photon sources (WCPs), which may suffer from a photon-number splitting (PNS) attack from eavesdroppers. Therefore, the existing MDI-QKD protocols also need the decoy-state method, which can resist PNS attacks very well. However, the existing decoy-state methods do not attend to the existence of PNS attacks, and the secure keys are only generated by single-photon components. In fact, multiphoton pulses can also form secure keys if we can confirm that there is no PNS attack. For simplicity, we only analyze the weaker version of a PNS attack in which a legitimate user’s pulse count rate changes significantly after the attack. In this paper, under the null hypothesis of no PNS attack, we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state MDI-QKD protocols via statistical hypothesis testing, extract a normal distribution statistic, and provide a detection method and the corresponding Type I error probability. If the result is judged to be an attack, we use the existing decoy-state method to estimate the secure key rate. Otherwise, all pulses with the same basis leading to successful Bell state measurement (BSM) events including both single-photon pulses and multiphoton pulses can be used to generate secure keys, and we give the formula of the secure key rate in this case. Finally, based on actual experimental data from other literature, the associated experimental results (e.g., the significance level is 5%) show the correctness of our method.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3