Data Augmentation of Automotive LIDAR Point Clouds under Adverse Weather Situations

Author:

Vargas Rivero Jose RobertoORCID,Gerbich Thiemo,Buschardt Boris,Chen JiaORCID

Abstract

In contrast to previous works on data augmentation using LIDAR (Light Detection and Ranging), which mostly consider point clouds under good weather conditions, this paper uses point clouds which are affected by spray. Spray water can be a cause of phantom braking and understanding how to handle the extra detections caused by it is an important step in the development of ADAS (Advanced Driver Assistance Systems)/AV (Autonomous Vehicles) functions. The extra detections caused by spray cannot be safely removed without considering cases in which real solid objects may be present in the same region in which the detections caused by spray take place. As collecting real examples would be extremely difficult, the use of synthetic data is proposed. Real scenes are reconstructed virtually with an added extra object in the spray region, in a way that the detections caused by this obstacle match the characteristics a real object in the same position would have regarding intensity, echo number and occlusion. The detections generated by the obstacle are then used to augment the real data, obtaining, after occlusion effects are added, a good approximation of the desired training data. This data is used to train a classifier achieving an average F-Score of 92. The performance of the classifier is analyzed in detail based on the characteristics of the synthetic object: size, position, reflection, duration. The proposed method can be easily expanded to different kinds of obstacles and classifier types.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3