Acoustic Emission Source Characterisation during Fatigue Crack Growth in Al 2024-T3 Specimens

Author:

Yao Xinyue,Vien Benjamin StevenORCID,Davies Chris,Chiu Wing KongORCID

Abstract

While acoustic emission (AE) testing can be used as a valuable technique in structural health monitoring and non-destructive testing, little research has been conducted to establish its sources, particularly in 2024-T3 aluminium alloys. The major contribution of this work is that it provides a method to obtain a better linear relationship of count rate with crack growth rate based on waveform. This paper aims to characterise AE sources by synchronising the AE waveforms with load levels and then to propose possible dominant frequency ranges. The AE waveforms during fatigue crack growth in edge-notched 2024-T3 aluminium specimens, from an initial crack length of 10 mm to 70 mm, were collected at two different load ratios R = 0.125 and 0.5. At the same time, the crack growth rate was determined using thermal imaging and associated control software. The AE waveforms obtained were processed using the fast Fourier transform. It was shown that a significantly higher AE count rate was recorded at R = 0.125 compared to R = 0.5 when the maximum load was kept the same. This means that the R-ratio would affect the total amount of AE activities collected. It was also found that the dominant frequency range of the AE waveforms directly related to crack growth was 152–487 kHz, and the ranges due to crack closure were likely to be 310 kHz–316 kHz and 500–700 kHz. Based on the proposed frequency ranges, waveform selection was conducted and a better linear relationship between count rate and crack growth rate was observed. This study provides a better understanding of the AE sources and waveforms for future structural health monitoring applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3