Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity

Author:

Peguero-Pina José JavierORCID,Vilagrosa AlbertoORCID,Alonso-Forn DavidORCID,Ferrio Juan PedroORCID,Sancho-Knapik DomingoORCID,Gil-Pelegrín Eustaquio

Abstract

Plant functioning and survival in drylands are affected by the combination of high solar radiation, high temperatures, low relative humidity, and the scarcity of available water. Many ecophysiological studies have dealt with the adaptation of plants to cope with these stresses in hot deserts, which are the territories that have better evoked the idea of a dryland. Nevertheless, drylands can also be found in some other areas of the Earth that are under the Mediterranean-type climates, which imposes a strong aridity during summer. In this review, plant species from hot deserts and Mediterranean-type climates serve as examples for describing and analyzing the different responses of trees and shrubs to aridity in drylands, with special emphasis on the structural and functional adaptations of plants to avoid the negative effects of high temperatures under drought conditions. First, we analyze the adaptations of plants to reduce the input of energy by diminishing the absorbed solar radiation through (i) modifications of leaf angle and (ii) changes in leaf optical properties. Afterwards, we analyze several strategies that enhance the ability for heat dissipation through (i) leaf size reduction and changes in leaf shape (e.g., through lobed leaves), and (ii) increased transpiration rates (i.e., water-spender strategy), with negative consequences in terms of photosynthetic capacity and water consumption, respectively. Finally, we also discuss the alternative strategy showed by water-saver plants, a common drought resistance strategy in hot and dry environments that reduces water consumption at the expense of diminishing the ability for leaf cooling. In conclusion, trees and shrubs living in drylands have developed effective functional adaptations to cope with the combination of high temperature and water scarcity, all of them with clear benefits for plant functioning and survival, but also with different costs concerning water use, carbon gain, and/or leaf cooling.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3