Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine

Author:

Fei Zhangjun1,Li Yiying1,Yang Shiyou1ORCID

Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Partial discharge (PD) is a crucial and intricate electrical occurrence observed in various types of electrical equipment. Identifying and characterizing PDs is essential for upholding the integrity and reliability of electrical assets. This paper proposes an ensemble methodology aiming to strike a balance between the model complexity and the predictive performance in PD pattern recognition. A simple convolutional neural network (SCNN) was constructed to efficiently decrease the model parameters (quantities). A quadratic support vector machine (QSVM) was established and ensembled with the SCNN model to effectively improve the PD recognition accuracy. The input for QSVM consisted of the circular local binary pattern (CLBP) extracted from the enhanced image. A testing prototype with three types of PD was constructed and 3D phase-resolved pulse sequence (PRPS) spectrograms were measured and recorded by ultra-high frequency (UHF) sensors. The proposed methodology was compared with three existing lightweight CNNs. The experiment results from the collected dataset emphasize the benefits of the proposed method, showcasing its advantages in high recognition accuracy and relatively few mode parameters, thereby rendering it more suitable for PD pattern recognition on resource-constrained devices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3