Multi-Regional Integrated Energy Economic Dispatch Considering Renewable Energy Uncertainty and Electric Vehicle Charging Demand Based on Dynamic Robust Optimization

Author:

Zhou Bo1,Li Erchao1

Affiliation:

1. College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Aiming at the problem of source-load uncertainty caused by the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs) into modern power system, a robust optimal operation scheduling algorithm for regional integrated energy systems (RIESs) with such uncertain situations is urgently needed. Based on this background, aiming at the problem of the irregular charging demand of EV, this paper first proposes an EV charging demand model based on the trip chain theory. Secondly, a multi-RIES optimization operation model including a shared energy storage station (SESS) and integrated demand response (IDR) is established. Aiming at the uncertainty problem of renewable energy, this paper transforms this kind of problem into a dynamic robust optimization with time-varying parameters and proposes an improved robust optimization over time (ROOT) algorithm based on the scenario method and establishes an optimal scheduling mode with the minimum daily operation cost of a multi-regional integrated energy system. Finally, the proposed uncertainty analysis method is verified by an example of multi-RIES. The simulation results show that in the case of the improved ROOT proposed in this paper to solve the robust solution of renewable energy, compared with the traditional charging load demand that regards the EVs as a whole, the EV charging load demand based on the trip chain can reduce the cost of EV charging by 3.5% and the operating cost of the multi-RIES by 11.7%. With the increasing number of EVs, the choice of the starting point of the future EV trip chain is more variable, and the choice of charging methods is more abundant. Therefore, modeling the charging demand of EVs under more complex trip chains is the work that needs to be studied in the future.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3