Experimental Study on Paraffin Wax and Soya Wax Supported by High-Density Polyethylene and Loaded with Nano-Additives for Thermal Energy Storage

Author:

Yadav Deepak Kumar1,Rathore Pushpendra Kumar Singh1ORCID,Singh Rajeev Kumar1ORCID,Gupta Arvind Kumar2,Sikarwar Basant Singh1ORCID

Affiliation:

1. Department of Mechanical Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida 201313, India

2. Department of Mechanical Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, India

Abstract

Thermal energy storage technology has evolved as one of the prominent methods of storing thermal energy when it is available and utilized as per the requirements. In recent years, thermal energy storage has found a variety of applications for thermal management, such as buildings, batteries, electronics, cold storage, textiles, and solar thermal systems. Phase Change Material (PCM) has taken the lead among all other thermal energy storage materials because of various merits such as high energy density, ease of use, low cost, low volume change, environmental friendliness, easy availability, and chemical stability. However, limitations such as poor thermal conductivity and leakage during phase transformation limit their applicability. In this study, Shape Stabilized Composite PCM (SSCPCM) was developed to overcome these drawbacks. Paraffin wax and soya wax were used as PCMs and multi-walled carbon nanotubes and graphene oxide were used as nano-additives. High-Density Polyethylene (HDPE) is used as a supporting matrix. Leakage test suggest maximum loading of 40 wt% and 35 wt% of paraffin wax and soya wax in HDPE without any leakage at elevated temperature. The prepared SSCPCM shows substantially better thermal energy storage capacity along with improved thermal conductivity. A maximum rise of 260.8% in thermal conductivity was observed in paraffin wax supported by HDPE and loaded with 3 wt% of multi-walled carbon nanotube nanoparticles. The heating and cooling performance suggests an improvement in the heating and cooling rate by adding nano-additives. The prepared SSCPCM are also thermally stable at elevated temperatures up to 150 °C.

Publisher

MDPI AG

Reference24 articles.

1. Self-Assembly of Binderless MXene Aerogel for Multiple-Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding;Zhu;Nanomicro Lett.,2024

2. Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges;Khan;J. Energy Storage,2023

3. Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study;Appl. Energy,2022

4. Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings;Patel;Renew Energy,2023

5. A VIKOR based selection of phase change material for thermal energy storage in solar dryer system;Balasundaram;Mater. Today Proc.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3