Effect of Nanoparticles and Their Anisometry on Adhesion and Strength in Hybrid Carbon-Fiber-Reinforced Epoxy Nanocomposites

Author:

Ilyin Sergey O.1ORCID,Kotomin Sergey V.12

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia

2. Chemistry Department, Bauman Moscow State Technical University, 2nd Baumanskaya ulica 5/1, 105005 Moscow, Russia

Abstract

Carbon-fiber-reinforced plastics are composite materials with record-high specific strength, which depends on the efficiency of stress redistribution between the reinforcing fibers by the polymer matrix. The problem is the accurate assessment of adhesion in the carbon fiber–polymer matrix system since it affects the overall strength of the composite. This paper provides a novel electrochemical method for determining adhesion by estimating the critical length of carbon fibers that protrude above the fracture surface of the fiber-reinforced composite using their electrical conductivity and insulating properties of the polymer matrix. The method has been successfully applied to evaluate adhesion in carbon plastics having an epoxy matrix filled with nanoparticles of different anisometry: carbon nanotubes, organomodified montmorillonite, or detonation nanodiamonds. In addition to adhesion measurements, the effect of nanoparticles on the viscosity of epoxy binder, its impregnation efficiency of carbon fibers, curing, glass transition, and tensile strength of fiber-reinforced composites was estimated. Nanodiamonds at a mass fraction of 0.1% proved to be the most effective for improving the quality of epoxy carbon plastics, increasing fiber–matrix adhesion by 2.5 times, tensile strength by 17%, and not decreasing the glass transition temperature.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3