A Study of Distributed Earth Observation Satellites Mission Scheduling Method Based on Game-Negotiation Mechanism

Author:

Liu Lihao,Dong Zhenghong,Su Haoxiang,Yu Dingzhan

Abstract

While monolithic giant earth observation satellites still have obvious advantages in regularity and accuracy, distributed satellite systems are providing increased flexibility, enhanced robustness, and improved responsiveness to structural and environmental changes. Due to increased system size and more complex applications, traditional centralized methods have difficulty in integrated management and rapid response needs of distributed systems. Aiming to efficient missions scheduling in distributed earth observation satellite systems, this paper addresses the problem through a networked game model based on a game-negotiation mechanism. In this model, each satellite is viewed as a “rational” player who continuously updates its own “action” through cooperation with neighbors until a Nash Equilibria is reached. To handle static and dynamic scheduling problems while cooperating with a distributed mission scheduling algorithm, we present an adaptive particle swarm optimization algorithm and adaptive tabu-search algorithm, respectively. Experimental results show that the proposed method can flexibly handle situations of different scales in static scheduling, and the performance of the algorithm will not decrease significantly as the problem scale increases; dynamic scheduling can be well accomplished with high observation payoff while maintaining the stability of the initial plan, which demonstrates the advantages of the proposed methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Optimized Model-Based Design Space Exploration of Distributed Multi-Orbit Multi-Platform Earth Observation Spacecraft Architectures;Araguz,2018

2. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Development of Concepts for an Intelligent Sensing System;Abbott,2002

3. Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3