Evaluation of Impulse Oscillometry in Respiratory Airway Casts with Varying Obstruction Phenotypes, Locations, and Complexities

Author:

Si Xiuhua,Xi Jensen S.,Talaat Mohamed,Donepudi Ramesh,Su Wei-Chung,Xi JinxiangORCID

Abstract

The use of impulse oscillometry (IOS) for lung function testing does not need patient cooperation and has gained increasing popularity among both young and senior populations, as well as in patients with breathing difficulties. However, studies of the IOS sensitivity to regional lung obstructions are limited and have shown mixed results. The objective of this study was to evaluate the performance of an IOS system in 3D-printed lung models with structural abnormalities at different locations and with different severities. Lung trees of two complexity levels were tested, with one extending to the sixth generation (G6) and the other to G12. The IOS responses to varying glottal apertures, carina ridge tumors, and segmental bronchial constrictions were quantified in the G6 lung geometry. Both the G6 and G12 lung casts were prepared using high-resolution 3D printers. Overall, IOS detected the progressive airway obstructions considered in this study. The resonant frequency dropped with increasing obstructions for all three disease phenotypes in the G6 lung models. R20Hz increased with the increase in airway obstructions. Specifically, R20Hz in the airway model with varying glottal apertures agreed reasonably well with complementary measurements using TSI VelociCalc. In contrast to the high-resistance (R) sensitivity to the frequency in G6 lung models, R was nearly independent of frequency in G12 lung models. IOS R20Hz demonstrated adequate sensitivity to the structural remodeling in the central airways. However, the changes of R5Hz and X5Hz vs. airway obstructions were inconclusive in this study, possibly due to the rigid lung casts and the difference of a container–syringe system from human lungs.

Publisher

MDPI AG

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3