Abstract
Steady-State Visual Evoked Potential (SSVEP) recognition methods use a subject’s calibration data to differentiate between brain responses, hence, providing the SSVEP-based brain–computer interfaces (BCIs) with high performance. However, they require sufficient calibration EEG trials to achieve that. This study develops a new method to learn from limited calibration EEG trials, and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEP detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, a multitask learning approach, based on the Bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperformed competing methods by a significant margin.
Funder
Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH CREATE INNOVATE
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献