Abstract
Increasing evidence has revealed that the enzymes of several biological pathways assemble into larger supramolecular structures called super-complexes. Indeed, those such as association of the mitochondrial respiratory chain complexes play an essential role in respiratory activity and promote metabolic fitness. Dynamically assembled super-complexes are able to alternate between participating in large complexes and existing in a free state. However, the functional significance of the super-complexes is not entirely clear. It has been proposed that the organization of respiratory enzymes into super-complexes could reduce oxidative damage and increase metabolism efficiency. There are several protein complexes that have been revealed in the plant chloroplast, yet little research has been focused on the formation of super-complexes in this organelle. The photosystem I and light-harvesting complex I super-complex’s structure suggests that energy absorbed by light-harvesting complex I could be efficiently transferred to the PSI core by avoiding concentration quenching. Here, we will discuss in detail core complexes of photosystem I and II, the chloroplast ATPase the chloroplast electron transport chain, the Calvin–Benson cycle and a plastid localized purinosome. In addition, we will also describe the methods to identify these complexes.
Subject
Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献