Effect of Sand-Frying-Triggered Puffing on the Multi-Scale Structure and Physicochemical Properties of Cassava Starch in Dry Gel

Author:

He Yonglin,Ye Fayin,Li Sheng,Wang Damao,Chen Jia,Zhao GuohuaORCID

Abstract

This study revealed the underlying mechanisms involved in the puffing process of dried cassava starch gel by exploring the development of the puffed structure of gel upon sand-frying, chiefly focused on the changes in the multi-scale structure and the physicochemical properties of starch. The results suggested that the sand-frying-induced puffing proceeded very fast, completed in about twenty seconds, which could be described as a two-phase pattern including the warming up (0~6 s) and puffing (7~18 s) stages. In the first stage, no significant changes occurred to the structure or appearance of the starch gel. In the second stage, the cells in the gel network structure were expanded until burst, which brought about a decrease in moisture content, bulk density, and hardness, as well as the increase in porosity and crispness when the surface temperature of gel reached glass transition temperature of 125.28 °C. Upon sand-frying puffing, the crystalline melting and molecular degradation of starch happened simultaneously, of which the latter mainly occurred in the first stage. Along with the increase of puffing time, the thermal stability, peak viscosity, and final viscosity of starch gradually decreased, while the water solubility index increased. Knowing the underlying mechanisms of this process might help manufacturers produce a better quality of starch-based puffed products.

Funder

Chongqing Technology Innovation and Application Development Special Key Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3