Analysis of Temperature Influence on Precipitation of Secondary Sediments during Water Injection into an Absorptive Well

Author:

Jakubowicz Piotr,Steliga TeresaORCID,Wojtowicz Katarzyna

Abstract

The extraction of hydrocarbons is associated with obtaining certain amounts of water, which is heavily contaminated with a wide range of chemical compounds that negatively affect the environment. At present, practically the only method of managing extracted reservoir waters is their injection into absorbing horizons. Large changes in parameters (pH, Eh, temperature, etc.) occurring during the extraction and storage of water, as well as the contact of the injected water with reservoir water and rock, may result in the precipitation of secondary sediments. The complexity of the injected water/native water/deposit rock system and the wide range of possible interactions do not always allow for correct interpretation of the processes and their impact on near-well zone permeability. One of the factors which has a decisive influence on dissolution/precipitation is temperature change. Applying analytical data of water with low (W-1) and high (W-2) mineralization, calculations were carried out with the use of PRHEEQC software. Changes in solubility index values were determined at ambient temperature (20 °C) and reservoir temperature (94 °C). The obtained results indicate that with increasing temperature, SI changes for a given chemical compound may run in different directions and take different values, depending on the composition of the injected water. The calculations indicate the possibility of a change in the direction of the reaction from dissolution to precipitation, which may lead to clogging of the near-well zone. Simulations of the injected water’s contact with minerals present in the reservoir rock were also carried out. The obtained data indicate that these minerals, in the entire studied temperature range, dissolve in the injected water, but the solubility of anhydrite and dolomite decreases with increasing temperature. If the water is saturated with minerals at low temperature, after heating in the bed, sedimentation and blockage of rock pores may occur, which means there is a reduction in the efficiency of water injection.

Funder

Polish Ministry of Science and Higher Education within statutory funding for Oil and Gas Institute-National Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference61 articles.

1. Changes in toxicity during treatment of wastewater from oil plant contaminated with petroleum hydrocarbons;Steliga;JCTB,2015

2. Recovery rates, enhanced oil recovery and technological limits;Muggeridge;Phil. Trans. R. Soc. A,2014

3. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhanced Oil Recovery and Induced Seismicity;Rubinstein;Seismol. Res. Lett.,2015

4. Możliwości zastosowania zaawansowanych metod wspomagania wydobycia ropy naftowej ze złóż dojrzałych;Stopa;Nafta-Gaz,2019

5. Onshore oilfield produced water treatment by hybrid microfiltration-biological process using kaolin based ceramic membrane and oleaginous Rhodococcus opacus;Purnima;Chem. Eng. J.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3