Abstract
Ethanol is considered an alternative fuel to power fuel cells, especially due to its ease of transport and storage and renewable production on a large scale. However, its use in direct ethanol fuel cells (DEFC) is still limited by incomplete electro-oxidation and slow reaction kinetics. Modeling approaches have focused on investigating different reaction mechanisms, but so far, no formal analysis of model parameter sensitivity has been conducted. This work modeled and identified sensitive parameters for different types of Pt–Sn catalysts previously prepared by our research group that displayed good performance in the 5–15 mW/cm2 range (relative to a performance of 12 mW/cm2 achieved by a commercial ETEK catalyst). Analyses to study the effect of these parameters on coverage fraction distribution, reaction rates and possible correlations were also performed. The model was developed based on Butler–Volmer kinetics and on a reaction mechanism previously reported in the literature. Statistical developments were considered to compute parameter uncertainties for a non-linear system with non-linear restrictions. The model achieved very good fits to experimental data, with low RMSE values between 0.22 × 10−4 and 4.2 × 10−4 A/cm2, while also showing surface coverage fraction distributions in agreement with other experiment-based works from the literature. All catalysts taken into account, the most sensitive parameters were the reaction rate constants associated with the formation of adsorbed CH3CO, and the direct and reverse water dissociative adsorption reactions, respectively. Additional analyses suggested that there is not much correlation between the parameters. The results from this work could contribute to the state-of-the-art DEFC models by providing insights into which variables may be assumed constant or which ones have the greatest impact on the model output, thus helping to reduce the model size and computational time for future broader DEFC models.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference19 articles.
1. E4tech (2022, February 01). The Fuel Cell Industry Review. Available online: https://www.FuelCellIndustryReview.com.
2. Direct ethanol fuel cells for transport and stationary applications—A comprehensive review;Badwal;Appl. Energy,2015
3. Sánchez-Monreal, J., Vera, M., and García-Salaberri, P.A. (2017). Fundamentals of Electrochemistry with Application to Direct Alcohol Fuel Cell Modeling. IntechOpen, 121–151.
4. Model catalyst studies on hydrogen and ethanol oxidation for fuel cells;Friedl;Electrochim. Acta,2013
5. Modeling and simulation of a direct ethanol fuel cell: An overview;Abdullah;J. Power Sources,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献