An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids

Author:

Khan Suhaib AhmadORCID,Tariq MohdORCID,Khan Asfar Ali,Urooj Shabana,Mihet-Popa LucianORCID

Abstract

The rise in power demand today necessitates its generation and transmission at high voltages. The efficient transmission of electric power requires transformers with an insulation system that exhibits excellent dielectric properties. In this paper ZnO and CuO nanomaterials are utilized to investigate the dielectric characteristics of pure synthetic ester oil and its related nanofluids (NFs) from room temperature up to 60 °C at increments of 20 °C, including AC breakdown voltage, Dielectric Dissipation factor, and DC resistivity. The breakdown testing is carried out in accordance with experimental IEC-60156 requirements. The DC resistivity and dissipation factor of oils are measured using the Dissipation Factor meter, resistivity meter, and a heating chamber with an oil cell that follows IEC 60247 standard. The statistical analysis is performed on the breakdown voltages test values using the Weibull probability distribution model for better accuracy. From the results, it has been found that ZnO nanofluid possesses a higher breakdown voltage among all the tested liquids. Furthermore CuO nanofluid gives a minimum value of dissipation factor even at higher temperatures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3