Numerical Simulation Study on Temporary Well Shut-In Methods in the Development of Shale Oil Reservoirs

Author:

Zhang Qitao,Liu Wenchao,Wei Jiaxin,Taleghani Arash Dahi,Sun Hai,Wang Daobing

Abstract

Field tests indicate that temporary well shut-ins may enhance oil recovery from a shale reservoir; however, there is currently no systematic research to specifically guide such detailed operations in the field, especially for the design of the shut-in scheme and multiple rounds of shut-ins. In this study, the applicability of well shut-in operations for shale oil reservoirs is studied, and a numerical model is built using the finite element method. In order to simulate the production in a shale oil reservoir, two separate modules (i.e., Darcy’s law and phase transport) were two-way coupled together. The established model was validated by comparing its results with the analytical Buckley–Leverett equation. In this paper, the geological background and parameters of a shale oil reservoir in Chang-7 Member (Chenghao, China) were used for the analyses. The simulation results show that temporary well shut-in during production can significantly affect well performance. Implementing well shut-in could decrease the initial oil rate while decreasing the oil decline rate, which is conducive to long-term production. After continuous production for 1000 days, the oil rate with 120 days shut-in was 9.85% larger than the case with no shut-in. Besides, an optimal shut-in time has been identified as 60 days under our modeling conditions. In addition, the potential of several rounds of well shut-in operations was also tested in this study; it is recommended that one or two rounds of shut-ins be performed during development. When two rounds of shut-ins are implemented, it is recommended that the second round shut-in be performed after 300 days of production. In summary, this study reveals the feasibility of temporary well shut-in operations in the development of a shale oil reservoir and provides quantitative guidance to optimize these development scenarios.

Funder

Fundamental Research Funds for Central Universities

CNPC Innovation Found

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3