Author:
Tian Jie,Yan Wende,Qi Zhilin,Huang Shiwen,Yuan Yingzhong,Dong Mingda
Abstract
Cyclic supercritical multi-thermal fluid stimulation (CSMTFS) is a novel technology that can efficiently recover heavy oil, while the heating effect, production and heat loss characteristics of CSMTFS have not been discussed. In this study, a physical simulation experiment of CSMTFS is conducted with a three-dimensional experimental system. The results of the study indicate that the whole process of CSMTFS can be divided into four stages, namely, the preheating stage, production increase stage, production stable stage and production decline stage, of which the production stable stage is the main oil production stage, and the production decline stage is the secondary oil production stage. In the first two stages of the CSMTFS process, there is no supercritical multi-thermal fluid chamber, and only a relatively small supercritical multi-thermal fluid chamber is formed in the last stage of the CSMTFS process. Out of the supercritical multi-thermal fluid chamber, supercritical water in the thermal fluids condensates to hot water and flows downward to heat the subjacent oil layer. At the same time, the non-condensate gas in the thermal fluids accumulates to the upper part of the oil layer and reduces heat loss. The analysis of heat loss shows that the heat loss rate gradually increases at first and then tends to be stable. Compared with conventional thermal fluid, the CSMTFS can more effectively reduce heat loss. The enthalpy value of supercritical multi-thermal fluid is significantly increased compared with that of multi-thermal fluid, which effectively solves the problem of insufficient heat carrying capacity of multi-thermal fluid. Overall, cyclic supercritical multi-thermal fluid stimulation can effectively solve the problems of conventional heavy oil thermal recovery technology in offshore heavy oil recovery; it is indeed a new improved-oil-recovery technique for offshore heavy oil. The findings of this study can help in better understanding the cyclic supercritical multi-thermal fluid stimulation process. This study is significant and helpful for application of CSMTFS technology in heavy oil recovery.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Chongqing Municipality, China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献