Abstract
Developing renewable energy technologies, especially solar technology, is of vital importance to cope with increasing energy consumption. The existing solar thermal systems have the disadvantages of capturing solar energy inefficiently and needing additional pumping power to circulate the working fluid. A concept of a direct absorption pump-free solar thermal system that combines the advantages of nanoparticles and pulsating heat pipes (PHP) is proposed in this work. The effects of a variety of parameters including nanoparticle types, nanoparticle concentration, and nanofluid filling rate on the performance of PHP were studied. It was found that PHP has the best filling rate (80–90%) making the best heat transfer performance and minimizing the thermal resistance. The concentration of nanoparticles affects the input power of the pulsating heat pipe and thus the operation of the PHP. The nanofluid with relatively low concentration cannot absorb enough solar energy to drive the PHP to operate normally. Experimental research shows that the new solar thermal system can absorb solar energy efficiently and transfer the heat into the targeted area spontaneously, which may be an approach for future solar thermal utilization.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference49 articles.
1. A review of solar collectors and thermal energy storage in solar thermal applications;Tian;Appl. Energy,2013
2. Research opportunities to advance solar energy utilization;Lewis;Science,2016
3. Gibb, D., Ledanois, N., Ranalder, L., and Yaqoob, H. (2022). Renewables 2022 Global Status Report, REN21.
4. Optimization of nanofluid volumetric receivers for solar thermal energy conversion;Lenert;Sol. Energy,2012
5. Experimental evaluation of a non-isothermal high temperature solar particle receiver;Bertocchi;Energy,2004
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献