An Optimization Study on the Operating Parameters of Liquid Cold Plate for Battery Thermal Management of Electric Vehicles

Author:

Wei Lichuan,Zou Yanhui,Cao Feng,Ma Zhendi,Lu Zhao,Jin LiwenORCID

Abstract

The development of electric vehicles plays an important role in the field of energy conservation and emission reduction. It is necessary to improve the thermal performance of battery modules in electric vehicles and reduce the power consumption of the battery thermal management system (BTMS). In this study, the heat transfer and flow resistance performance of liquid cold plates with serpentine channels were numerically investigated and optimized. Flow rate (m˙), inlet temperature (Tin), and average heat generation (Q) were selected as key operating parameters, while average temperature (Tave), maximum temperature difference (ΔTmax), and pressure drop (ΔP) were chosen as objective functions. The Response Surface Methodology (RSM) with a face-centered central composite design (CCD) was used to construct regression models. Combined with the multi-objective non-dominated sorting genetic algorithm (NSGA-II), the Pareto-optimal solution was obtained to optimize the operation parameters. The results show that the maximum temperature differences of the cold plate can be controlled within 0.29~3.90 °C, 1.11~15.66 °C, 2.17~31.39 °C, and 3.43~50.92 °C for the discharging rates at 1.0 C, 2.0 C, 3.0 C, and 4.0 C, respectively. The average temperature and maximum temperature difference can be simultaneously optimized by maintaining the pressure drop below 1000 Pa. It is expected that the proposed methods and results can provide theoretical guidance for developing an operational strategy for the BTMS.

Funder

China Post-doctoral Science Foundation Funded Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles;Amjad;Renew. Sustain. Energy Rev.,2020

2. Leipzig, I.T.F. (2010). Background for the 2010 International Transport Forum, Berlin, ITF.

3. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles;Andersen;Energy Policy,2009

4. A model for simulating fast charging of lead/acid batteries;Maja;J. Power Sources,1992

5. Liu, J., Gao, D., and Cao, J. (2012, January 9–12). Study on the effects of temperature on LiFePO4 battery life. Proceedings of the 2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3