Multi–Output Classification Based on Convolutional Neural Network Model for Untrained Compound Fault Diagnosis of Rotor Systems with Non–Contact Sensors

Author:

Son Taehwan1ORCID,Hong Dongwoo2ORCID,Kim Byeongil2ORCID

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

2. School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Fault diagnosis is important in rotor systems because severe damage can occur during the operation of systems under harsh conditions. The advancements in machine learning and deep learning have led to enhanced performance of classification. Two important elements of fault diagnosis using machine learning are data preprocessing and model structure. Multi–class classification is used to classify faults into different single types, whereas multi–label classification classifies faults into compound types. It is valuable to focus on the capability of detecting compound faults because multiple faults can exist simultaneously. Diagnosis of untrained compound faults is also a merit. In this study, input data were first preprocessed with short–time Fourier transform. Then, a model was built for classification of the state of the system based on multi–output classification. Finally, the proposed model was evaluated based on its performance and robustness for classification of compound faults. This study proposes an effective model based on multi–output classification, which can be trained using only single fault data for the classification of compound faults and confirms the robustness of the model to changes in unbalance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3