Novel Advanced Composite Bamboo Structural Members with Bio-Based and Synthetic Matrices for Sustainable Construction

Author:

Mofidi AmirORCID,Abila Judith,Ng Jackson Tsz Ming

Abstract

This paper experimentally investigates the properties of unprecedented new advanced composite structural members in compressions made of bamboo culms formed with different bio-based and synthetic matrices. Due to extensive CO2 emissions corresponded to the production of construction materials, it is essential to produce high-performance environmental-friendly construction materials from bio-based renewable resources such as bamboo. However, the use of bamboo culms in construction has been hindered by their inherent specific geometric hollow shape. To address this issue, small-diameter bamboo species were used in this study to form solid structural composite cross-sections to desired shapes. An experimental study was conducted on the compressive properties of six composite structural members made of commonly available bamboo species (Phyllostachys edulis or Moso) with different matrices including a bio-based furan resin, a cementitious grout, and epoxy. In order to prevent premature buckling of bamboo components within the engineered columns, and in an attempt to propose a bio-based structural column, three layers of hemp wrap where applied to provide confinement for bamboo culms. The results of the tests confirm that the bamboo-furan and bamboo-grout composite columns both have the potential to reach a remarkable compressive strength of 30 MPa. However, the bamboo-epoxy composite specimen, considering the excellent mechanical properties of the epoxy matrix, delivered a benchmark to demonstrate the potentials of bamboo-based structural sections by reaching 76 MPa compressive strength before crushing. The bamboo-epoxy composite provided new prospects for future work on the 100% bio-based versions of the bamboo-based sections with improved bio-matrices (by using bio-epoxy and improved furan resins with compatible mixes) and innovative confinement types. With the promising results of this study, there is a real opportunity of creating contemporary engineered bamboo-based structures as a sustainable replacement to the existing steel, concrete and timber structures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Bond-behavior study of newly developed bamboo-composite reinforcement in concrete

2. Department of Economic and Social Affairs, Population Division,2018

3. Green Gas Removal;Dowling,2018

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3